Kleiner Wegweiser durch das Eisspeicher-Labyrinth

Die Siedler versuchen, in ihrer kleinen Welt Ordnung zu halten. Alles hat seinen Platz. Vorhandenes wird penibel katalogisiert und ökologisch wiederverwertet.

Das gilt für die Landwirtschaft …

Die Samenbank. Wiederverwertung von Fichtenkantholz durch präzisen Einsatz der Kappsäge.

Der Brutkasten. Unikat aus Fichtenkantholz, Kupferrohr und Zeitungspapier.

… wie für ihre Internet-Postillen zum Eisspeicher-Wärmepumpensystem.

Immer beantworten die Siedler die fundamentalen Fragen: Was soll das alles hier? oder Wie funktioniert das? Im Lauf der Jahre sind daraus einige Überblicksseiten entstanden, die das Thema mehr oder weniger überblicksmäßig behandeln – von der schnellen Info für den ungeduldigen Leser bis zum echten Eisspeicher-Aficionado:

Eine größere Herausforderung (als die Popularisierung des Eisspeichers) ist die Frage nach dem Großen Ganzen zu klären – also zu beantworten, was dieses punktwissen jetzt wirklich ist / macht.

Trotz dieser professionellen Selbstdarstellung bleiben da vielleicht noch Fragen offen …

… die in dieser kleinen Bildergeschichte eventuell geklärt werden können.

Die Bedürfnispyramide des Eisspeichers

Die Datenkrake hat eine ältere Schwester, der bisher noch nicht gefeatured wurde in unseren Internet-Postillen. Bevor die Siedler sich daran wagten, ihren Erdkeller in einen Eisspeicher umzufunktionieren, haben sie eine Orakelkrake gezüchtet – das Orkrakel: eine Simulation des zukünftigen Wärmepumpensystems. Das Orkrakel mutierte mehrfach: Heute ernährt es sich von realen Wetterdaten, ahmt die schlaue Regelung und die dumme Wärmepumpe nach, löst die Wärmeleitungsgleichung für den Boden und führt penibel – in 1-Minuten-Schritten – Buch über den Energieinhalt aller Tanks .

Als echter Geek und Theoretiker kann sich das Elkement hier in Details verlieren. Bei jeder Änderung der Eingangsparameter steigt der Adrenalinspiegel: Wie hoch wird Peak Ice sein? Reicht die Größe des geplanten Tanks aus?

Besonders spannend ist die ‚Sensitivitätsanalyse‘: Worauf reagiert die Orakelkrake besonders heftig? Ihr Energiestoffwechsel scheint tatsächlich filigran zu sein: Kaum dreht man ‚ein bisschen‘ an der Schraube der thermischen Eigenschaften des Bodens oder an der Kollektor-‚Stärke‘ wächst das Eis scheinbar unverhältnismäßig. Wie immer ist es gut, dann einen Schritt zurückzutreten: Tatsächlich lässt sich dies mit Volksschulmathematik auch schon zeigen, ganz ohne Differenzialgleichungen.

Der Beitrag von Kollektor und Boden hängt allerdings u.a. ab von der Steuerungslogik, der Hydraulik, der Form des Tanks und den Wärmeübertragungseigenschaften von Kollektors und Boden. Was man daher wissen muss für den Buchhalter-Ansatz, ist die mittlere Energieausbeute des Kollektors und des Bodens – aus Simulationen oder durch belastbares Zahlenmaterial aus Messungen.

Wie die Siedler nicht müde werden zu betonen, liefert der Kollektor den Löwenanteil der Entzugsenergie der Wärmepumpe – auch in den Eismonaten Dez/Jan/Feb. Der Rest kommt aus dem Boden oder wird dem gefrierenden Wasser im Tank entzogen.

Dann lässt sich so ein Bildchen zeichnen:

Eisspeiche: Bedürfnispyramide - Umweltenergie in den Eismonaten

(Geistreiche Analogien zur Psychologie bitte hier einsetzen)

Am Beispiel einiger typischer Zahlen lässt sich das Eiswachstum illustrieren:

  • Ein quaderförmiger Tank fasst 23 m3
  • Benötigte Umweltenergie für Dez/Jan/Feb: ~7000kWh
    (Das entspricht ca. 9330kWh Heizenergie bei einer Arbeitszahl von 4)
  • ‚Standard‘ Szenario: Der Kollektor liefert 75% der Umweltenergie, die Erde ca. 18%.
  • Schlechtere‘ Szenarien: Kollektorenergie oder Erdenergie oder beide werden um 25% gegenüber dem Standardwert verringert.

Die drei Quellen – Luft/Sonne, Boden und Eis – müssen zusammen die Umweltenergie bereitstellen:

Beiträge zur Umweltenergie in den Eismonaten - Szenarien

Die Energie, die im Eis steckt ist nur der Lückenfüller: Je schlechter Boden und Kollektor ‚performen‘ umso mehr Wasser muss gefroren werden. Liefert der Kollektor ’nur ein bisschen‘ weniger Energie als ’normal‘, ist dieses bisschen von z.B. wenigen 100 kWh nicht vernächlassigbar gegenüber dem Energieinhalt des Eisspeichers.

Das Eis ist nur die Spitze des Energieeisberges!

… in diesem Luft-Erd-Eis-Wärmepumpensystem.

Die Bezwingung des K9

Das Ganze hatte relativ harmlos begonnen. Damals hatte Irgendwer folgendes Ereignis penibel im Anlagenlogbuch vermerkt:

„Logbucheintrag 30.11.2016 04:59: Wärmepumpe zeigt Störung HOCHDRUCK an. Keine Ursache / kein besonderer Temperaturverlauf erkennbar. Nach Reset der Wärmepumpe arbeitet diese wieder normal. – Ursache für die Hochdruckstörung vorerst unbekannt.“

Störmeldung: HOCHDRUCK bei der Stiebel-Eltron WPF-7-Basic

Störmeldung: HOCHDRUCK bei der Stiebel-Eltron WPF-7-Basic

Dieser Eintrag war schon fast wieder in Vergessenheit geraten. Bis es Irgendwem irgendwann mitten im kältesten Jänner seit 30 Jahren kurz nach dem Aufstehen etwas frisch in der Siedlerhütte vorkam.

Als er noch etwas schlaftrunken einer alten Gewohnheit folgend an den Heizkörper griff, war er plötzlich hellwach: KALT!!! – eine schlimme Vorahnung beschlich Irgendwen. Und so führte ihn sein erster Weg in den Maschinenraum, wo er feststellen musste, dass die Wärmepumpe mit einer trotzigen Störmeldung ihren Dienst versagt hatte:

Störmeldung: SCHÜTZ KLEBT bei der Stiebel-Eltron WPF-7-Basic

Störmeldung: SCHÜTZ KLEBT bei der Stiebel-Eltron WPF-7-Basic

„Logbucheintrag 14.01.2017 23:12: Fehlermeldung SCHÜTZ KLEBT. Laut Logging-Daten wurde ein Heizzyklus normal beendet. Danach ist die WP nicht mehr angelaufen. Nach Reset läuft die Wärmepumpe wieder normal.“

Die Hoffnung, dass sich die Wärmepumpe wie vor fast zwei Monaten nur ‚verschluckt‘ hatte und ein Reset das Problem lösen würde, zerschlug sich leider nur wenige Stunden später mit einem erneuten ‚SCHÜTZ KLEBT‘.

So bewaffnete sich Irgendwer mit Schraubenzieher und Taschenlampe und unternahm eine Expedition in die Wärmepumpe. Neben den Schützen K1 und K2, die zumindest während seiner Beobachtungen sauber zu schalten schienen, erweckten eher die filigranen, aufgesteckten Hilfskontakte seinen Argwohn.

Schütz K1 und K2 in der WPF-7-Basic

Im Kabel-Dschungel machte Irgendwer diese Verdächtigen aus: Schütze K1 und K2 und die beiden aufgesteckten Hilfskontakte, die der Regelung den Schaltzustand der Schütze signalisierten.

Und während er noch überlegte, ob er nur die Hilfskontakte oder gleich die Schützen austauschen sollte, verwirrte ihn die Wärmepumpe vollends mit einer weiteren Störmeldung ‚HOCHDRUCK‘. Auch dieses Mal war diese Störung beim besten Willen nicht mit einer Überhitzung des Verflüssigers der Wärmepumpe in Zusammenhang zu bringen.

Was war denn plötzlich in die Wärmepumpe gefahren, dass sie scheinbar zusammenhanglose Fehlermeldungen produzierte, dann aber wieder einen halben Tag vollkommen normal funktionierte?!

Irgendwessen Verdacht, dass der ‚el(k)ementare‘ Hackerangriff auf die Wärmepumpe die ‚Aussetzer‘ der Wärmepumpenregelung verursacht haben könnten, waren vom Wissenschaftsoffizier zunächst vehement bestritten und kurz danach auch experimentell widerlegt worden.

So wurde es nun höchste Zeit, den Stiebel-Eltron Kundendienst mit diesem Verhalten zu konfrontieren! Nachdem er dessen erste Verteidigungslinie überwunden hatte, meldete sich ein Techniker, der die WPF-Basic in- und auswendig zu kennen schien. Dieser stellte einige sehr präzise Fragen über das Alter der Wärmepumpe und die Farbe (!?) der eingebauten Relais.

k9-relais-k9

Das schwarze(!) Relais K9, das sich in der hintersten Ecke des Schaltfeldes unter einem Gedärm aus Drähten verbarg, schien in der ganzen Affäre eine wesentliche Rolle zu spielen …

Nach einer kurzen Fachsimpelei war der Lösungsvorschlag des Technikers eindeutig. Dieser hörte sich im vertrauten oberösterreichischen Idiom ungefähr so an:

„Des schwoaze K9-Relais gheat tauscht! Gaunz hinten am Schoitföd. Weu des hängt do ois zaum, de Hüfskontakte von de Schütz und da Hochdruckwächta!“

Und so machte sich Irgendwer umgehend auf die Suche nach einem Ersatz für das Relais K9. Aber bis der geliefert und auch eingebaut war, galt es noch einige Tage zu überstehen, in denen die Wärmepumpe zu allen Tages- und Nachtzeiten eine erhöhte Aufmerksamkeit erforderte.

k9-onlineschema-handy

Mit dem Online-Schema auf seinem Smartphone hatte Irgendwer die Anlage immer im Blickfeld, um sofort auf Störungen reagieren zu können …

Denn wie zwei Lausbuben wechselten sich die Störmeldungen ‚SCHÜTZ KLEBT‘ und ‚HOCHDRUCK‘ ab. Scheinbar nur um Irgendwen auf Trab zu halten, der mehrmals täglich  brav in den Maschinenraum trabte, um einen Reset der Wärmepumpe durchzuführen.

Endlich war das heiß ersehnte Paket eingetroffen. Mit dem neuen, weißen 😉 Relais.

Finder 66.82.8.230.0000

Schließlich war das neue Relais K9 in die Wärmepumpe eingebaut.

Und tatsächlich: nach dem Einbau der Ersatz-Relais war der Spuk genauso schnell wieder vorüber, wie er begonnen hatte…

Erde, Luft, Wasser und Eis – wozu das alles?

Jahrelang kämpften die Siedler mit der einen großen Herausforderung des Eisspeicher-Journalismus. Wie stellt man am besten dar, wie das Zusammenspiel von Kollektor und Eisspeicher funktioniert? Wie beantwortet man solche Fragen:

Was bringt der Kollektor eigentlich?

oder

Wozu braucht man den Kollektor überhaupt, wenn die Arbeitszahl während einer Eisspeicher-Challenge ohne Kollektor eh nicht so stark absinkt?

und vor allem

Wie groß ist eigentlich der Beitrag der Erde?

Kann hier die Datenkrake helfen, besser darzustellen, was im Lauf einer Heizsaison passiert?

Aus dem Eisvolumen und der aktuellen Tanktemperatur wird der Energievorrat im Tank berechnet. Die Energie im Tank ändert sich vor allem dadurch …

  1. dass aus dem Tank laufend Energie durch den Wärmetauscher entnommen (Wärmepumpenbetrieb) oder zugeführt (Kollektor) wird.
  2. und dass über die Wand und den Boden des Tanks Wärme mit der Umgebung ausgetauscht wird.

Der Beitrag der Erde kann aus Eisvolumen, Tanktemperatur und der gemessenen Wärmetauscher-Energie berechnet werden. Ergo:

Vorratsänderung (Eis, Wasser) = Energie Tankwärmetauscher + Energie Erde

In stundenlangen Sitzungen von Forschungs- und Ingenieursabteilungen wurden dabei folgende Definitionen für die Vorzeichen dieser Beiträge festgelegt:

Energiequellen, -austausch, -vorrat - Vorzeichenfestlegungen

Wenn der Kollektor aktiv ist, sind drei Wärmetauscher in Serie geschaltet: Der Kollektor, der Wärmetauscher im Tank und der Verdampfer der Wärmepumpe. Die Wärmepumpe entnimmt ihre Entzugsenergie entweder nur aus dem Eisspeicher (wenn der Kollektor weggeschaltet ist) oder aus der kombinierten Quelle gebildet aus Kollektor und Tank.

In den folgenden Diagrammen für die ‚Eisspeicher-Challenge-Saison‘ 2014-2015 werden Entzugsenergie, Kollektorernte, Energiefluss über den Tank-Wärmetauscher, Beitrag der Erde und die Änderung des Eis-/Wasser-Energievorrats gegenübergestellt.

Saison 2014-2015: Monatsbilanzen: Energiequellen, -austausch, -vorrat

Von September bis Jänner steigt die benötigte Entzugsenergie – aber auch der Kollektorbeitrag! Je länger die Wärmepumpe gleichzeitig mit dem Kollektor läuft und je kälter der Tank im Vergleich zur Luft ist, umso mehr Energie kann geerntet werden. In einer typischen Saison deckt der Kollektor in den Eismonaten Dez / Jan / Feb ca. 75% der benötigten Entzugsenergie ab – aber nur in Zusammenspiel mit dem Eisspeicher!

Am Anfang der Saison 2014/15 – solange sich noch kein Eis gebildet hat – folgen die Tanktemperatur und die Soleeintrittstemperatur ungefähr der Außentemperatur. Ende November ist die Außentemperatur aber schnell gesunken – damit kann über den Kollektor aus der vergleichsweise kalten Luft wenig in den noch warmen Tank geerntet werden. Daher wird der Eis-Wasser-Vorrat angezapft und die Erde beginnt zu liefern.

2014-09-01 - 2015-05-15: Temperaturen und Eisbildung

2014-09-01 - 2015-05-15: Tagesbilanzen: Energiequellen, -austausch, -vorrat Am 10.1.2015 konnte dank des Wintersturms Felix extrem viel Kollektorenergie geerntet werden.

Erst nach Abschalten des Kollektors mit Anfang Februar (‚Eisspeicher-Challenge‚), ändert sich der Vorrat beim Vereisen deutlich.

Da der Kollektorbeitrag im Februar gleich Null ist, entspricht der Energieaustausch über den Tank-Wärmetauscher genau der Entzugsenergie. Die Erde liefert dann ca. ein Drittel der Entzugsenergie.

Mitte März startet der Auftauvorgang: Der Kollektor kann aufgrund der konstant auf 0°C bleibenden Tanktemperatur viel ernten und der Tankvorrat wird schlagartig wieder aufgepumpt. Der Energieaustausch mit der Erde ist sehr klein, während der Wärmefluss über den Tankwärmetauscher fast gleich der Vorratsänderung ist.

Anfang Mai startet der Sommerbetrieb: der Kollektor ist aus, um den Tank solange wie möglich auf 8°C zu halten – was zu einem kleinen Wärmefluss der schon warmen Erde in den Tank führt.

LEO, NEO & QUADRO

Wie schön doch das Geräusch einer Wärmepumpe sein konnte! Besonders jetzt, da sie das erste Mal nach dem Bau seiner neuen LEO_2-Anlage angesprungen war und beruhigend vor sich hin brummte!

162tage-waermepumpe-2

Wie schön doch das Brummen der Wärmepumpe sein konnte …

Irgendwo weit, weit weg von Pannonien fiel einem verwegenen Siedler, der über den Sommer seine Heizung umgebaut hatte, ein großer Stein vom Herzen. Nicht auszumalen, was passiert wäre, wenn er die Anlage nicht rechtzeitig zum Laufen gebracht hätte! Nachdem ihm der sommerliche September noch etwas Aufschub gewährt hatte, war dann doch schön langsam die Kälte in seine Siedlerhütte gekrochen und hätte binnen kürzester Zeit zu einer Meuterei seiner ‚Mannschaft‘ geführt. Aber diese Gefahr war nun definitiv abgewendet!

162tage-ol-schema-jpg

Mit dem Online-Schema hatte er die ganze Anlage im Überblick und konnte sich damit rasch von deren korrektion Funktion überzeugen …

Während er gespannt auf die Anzeigen der Sensorwerte blickte, fiel langsam die Spannung des vergangenen halben Jahres von ihm ab. Er hatte nicht damit gerechnet, wie intensiv diese Zeit werden würde, nachdem er damals die Tüftler aus dem fernen Pannonien kontaktiert hatte…

Aber er hatte ja nicht nur in Rekordzeit ‚irgendein LEO_2‘ gebaut, sondern auch seine eigenen ganz speziellen Ideen verwirklicht, die er in vielen E-Mails und Online-Sitzungen mit Irgendwem diskutiert und verfeinert hatte.

So hatte er zusätzlich zur bestehenden Regenwasserzisterne einen weiteren Eisspeicher verbuddelt. Aber nicht irgendeinen, sondern den Fetten Blauen Ring-Wurm, wie ihn Irgendwer bezeichnete (was der immer mit seinem Gewürm hatte …). Aufgrund des hohen Grundwasserspiegels und der Zugänglichkeit seines Grundstückes hatte es aber nicht wirklich eine bessere Alternative gegeben.
Es war zwar nicht ganz einfach gewesen, das Trägergestell und den Wärmetauscher einzubauen, aber schließlich hatte er gemeinsam mit Irgendwem doch noch eine Lösung ausgetüftelt. Nach ‚einigen‘ unvergesslichen Stunden im Inneren von ‚NEO‘ hatte er sogar noch das alte ‚Quadro‘-Kinderspielzeug wiederverwertet, das ohnehin nur im Keller verstaubt war …

162tage-innereien-von-neo

Die perfekt ausgetüftelte Lösung: Wiederverwertung des ausgedienten Kinderspielzeugs ‚Quadro‘ für ein Trägergestell im NEO-Eisspeicher …

Auf den Schlauchkollektor hatte er zunächst verzichtet. Stattdessen hatte er seine Photovoltaik-Module an der Rückseite mit einem Wärmetauscher versehen, der statt dem Schlauchkollektor in den Solekreis eingebunden war. Damit wollte er einerseits Umweltenergie aus Luft und Sonne für LEO_2 sammeln, und andererseits die PV-Module kühlen und damit deren Effizienz steigern. Ob dieses Kalkül aufging, würde er dann spätestens nächstes Frühjahr wissen …

162tage-pv-kollektor

Der kommende Winter wurde spannend: Konnten die Wärmetauscher auf der Rückseite seiner Photovoltaik-Module den Schlauchkollektor wirklich vollständig ersetzen …?

Und ein paar weitere Ideen hatte er noch im Hinterkopf, die er aufgrund der begrenzten Zeit im ersten Anlauf noch nicht in die Tat umsetzen konnte. Im Gesamtkonzept waren sie bereits vorgesehen, mussten aber noch ein wenig auf ihre Realisierung warten …

Wärmepumpe einmal anders

Die Siedler arbeiten mit recht schlichten Sole-Wasser-Wärmepumpen. In der in diesem Blog dokumentierten Siedlerforschung wird deren Innenleben in der Berichterstattung sträflich vernachlässigt und als Black Box betrachtet. Doch wenn die Abende im Herbst länger werden, dann beginnen sie so manche Internet-Recherche, um grundsätzliche Fragen zu beantworten.

Könnte man eine Wärmepumpe nicht komplett anders bauen?

Und tatsächlich findet man eine verwegene Truppe aus dem Land der Siedler, die genau das gemacht hat: Die so genannte Rotationswärmepumpe verwendet keinen ‚klassischen‘ Kompressor und hier wird auch nicht verflüssigt und verdampft.

Der Druckunterschied wird durch die Zentrifugalkraft der gemeinsamen Rotation der beiden Wärmetauscher auf der Quellen (Niederdruck)- und der Heizungs- (Hochdruck) Seite erzeugt! Der Niederdruckwärmetauscher befindet sich näher an der Achse. Quelle und Senke werden durch die Achse angekoppelt. Die Rotationsgeschwindigkeit beträgt bis zu 1800 Umdrehungen pro Minute. In diesem Video von ECOP wird der Prozess im Detail erklärt.

Das Kältemittel – ein Gemisch aus Edelgasen – wird mit einem Ventilator im Kreis gepumpt und entsprechend einem ‚umgekehrten‘ Joule-Prozess genutzt: Gas wird komprimiert, dadurch erhitzt und dann bei konstantem Druck abgekühlt – hier wird Heizenergie frei. Im nächsten Schritt expandiert das Gas und wird dann bei konstantem (niedrigerem) Druck erhitzt – hier wird der Quelle Energie entzogen.

In der Lehrbuchversion dieses Prozesses sitzt eine (durch Expansion angetriebene) Turbine auf der gleichen Welle wie der Kompressor: Die Kompressionsarbeit ist in der gleichen Größenordnung wie die an der Turbine frei werdende Energie und beide Energien sind relativ hoch im Vergleich zur Differenz – der Nettoantriebsenergie.

Im Gegensatz dazu verwendet man in einer Heizungswärmepumpe zur Expansion des Gases keine Miniturbine, sondern ein Expansionsventil: Hier würde sich die Energierückgewinnung nicht auszahlen. Im Joule-Prozess ist sie unbedingt erforderlich.

Das erklärt, warum die Effizienz des Kompressionsprozesses in der Rotationswärmepumpe sehr hoch sein muss im Vergleich zu den Anforderungen an 0815-Scrollkompressoren in Heizungswärmepumpen: Wenn die Differenz zwischen Kompressionsleistung und Expansionsleistung im Idealfall 100kW beträgt und die Effizienz des Kompressionsprozesses von 100% auf 80% sinkt, ändert sich die Leistungszahl drastisch –  siehe das Zahlenbeispiel auf S. 10 in dieser Veröffentlichung: Im Idealfall werden 100kW benötigt, um die Differenz zwischen 1200kW gewonnener Expansionsleistung und 1300kW absoluter Kompressionsleistung abzudecken. Bei einer Effizienz der Kompression von 80% müssen bei gleich bleibender Expansionsleistung für die Kompression ~1600kW aufgebraucht werden. Die Nettoleistung beträgt dann 500kW – das Fünffache im Vergleich zum perfekten Prozess. Der COP sinkt von 10 auf 2,3.

Diese Anforderungen an die Effizienz erklären wahrscheinlich, warum Rotationswärmepumpen ‚groß gebaut‘ werden und einmal für den industriellen Einsatz gedacht sind. Ein weiterer Vorteil des Prozesses ohne Phasenübergang ist, dass man sich sozusagen ein beliebiges Plätzchen im Zustandsdiagramm aussuchen kann: Die Wärmepumpe kann damit flexibel zwischen sehr unterschiedlichen – und auch Siedlerhütten-untypischen – Temperaturen betreiben werden.

____________________

Den wahnsinnig kreativen Titel zu diesem Posting haben wir uns tatsächlich selbst ausgedacht – wobei wir gerne auf dieses unabsichtliche Plagiat hinweisen.

Herbstliche Gewohnheiten (2)

Nachdem eine ungewöhnlich warme erste Septemberhälfte die Siedler mit sommerlichen Temperaturen verwöhnt hatte, begann nun unaufhaltsam der Herbst in Pannonien Einzug zu halten. Bald würde LEO_2 wieder aus seinem Sommerschlaf erwachen, um für die wohlige Temperierung der Siedlerhütte zu sorgen.

2015-2016-herbst

Es wurde herbstlich in z-village …

Alles war vorbereitet:

Routinemäßig hatte Irgendwer eine kleine Sole-Probe gezogen und mit dem Refraktometer den Frostschutz geprüft, der erwartungsgemäß unverändert bei einem Wert von ca. -25°C lag.

2015-2016-refraktometermessung-frostschutz

Der Frostschutz wurde mittels Refraktometer geprüft: OK.

Sicherheitshalber hatte er in diesem Zuge auch gleich ein paar Liter Sole nachgefüllt, denn mit dem Sinken der Temperatur im Solekreis würde auch der Soledruck im Winter wieder ein wenig zurückgehen.

Auch hatte er trotz der warmen September-Temperaturen den Kühlmodus wieder beendet. Aufgrund der kühlen Nächte war es auch nicht mehr notwendig, mit der passiven Kühlung nachzuhelfen. Viel wichtiger war es nun, den Eisspeicher im September auf Maximaltemperatur aufzuladen. – Denn im Herbst standen die ‚fetten‘ Monate mit den höchsten Arbeitszahlen des ganzen Jahres bevor, auf die sich Irgendwer schon insgeheim freute …

Zu Irgendwessen Herbst-Ritualen zählte auch der Rückblick auf das vergangene LEO_2-Jahr, der sich wie folgt darstellte.

Bis auf den Jänner mit zwei Kälteperioden war der Winter 2015/2016 ungewöhnlich mild verlaufen. Der Frühling war aber nur sehr stotternd in die Gänge gekommen.

2015-2016-temperaturen-und-eisbildung-leo_2

Erst im Jänner hatte sich mit einem Maximum von knapp 7m3 nennenswert Eis im Eisspeicher gebildet, das aber Mitte Februar schon wieder vollständig geschmolzen war.

Das war auch der Grund, warum die Siedlerhütte nur einen vergleichsweise niedrigen Jahres-Gesamtwärmebedarf von 16.725 kWh (inkl. Warmwasser) gehabt hatte. Bei einer Jahres-Arbeitszahl von knapp 4,6.

2015-2016-leistungsdaten-leo_2

Leistungsdaten 2015/2016 auf die Monate herunter gebrochen: Die höchsten Monats-Arbeitszahlen hatte es naturgemäß in den Herbstmonaten September bis November und dann wieder im Frühjahr (April und Mai) gegeben. Dann, wenn die Wärmequelle relativ warm und die mittlere Vorlauftemperatur der Wärmepumpe relativ niedrig sind …

Obwohl über die gesamte Heizperiode nur die halbe Kollektorfläche genutzt worden war, konnten trotzdem beachtliche 10.484 kWh über den Kollektor geerntet werden – und das vorwiegend in der kalten Jahreshälfte.

2015-2016-kollektorernte-und-heizwaermebedarf-leo_2

Der milde Wetterverlauf hatte sich auch positiv auf die Kollektorernte ausgewirkt …


Weitere Informationen: Details zu den Messdaten der LEO_2 Pilotanlage sind hier zu finden …

Wärmepumpen-Forensik – Teil 2: Mitloggen der Heizenergiewerte

Nachdem sich der neue CAN-Bus-Sniffer warmgeschnüffelt hatte mit nicht sehr spannenden Testwerten, wurde es Zeit für den Einsatz im Feld.

Der Raspberry Pi erhielt zunächst einmal einen würdigen Platz, um sich Überblick über den Heizraum zu verschaffen …

Raspberry Pi hat Alles im Blick

Eine typische provisorische Teststellung. Die einzige Stelle, an der am Beginn der Tests das WLAN-Signal halbwegs OK war. Ein ausgekreuztes Ethernet-Kabel gibt’s außerdem auch noch!

Das CAN-Bus-Kabel wurde entsprechend der Bedienungsanleitung an die Wärmepumpe angeklemmt:

Bedienungsanleitung Stiebel-Eltron WPF 7 basic, Abschnitt Kleinspannung

Manual (nicht mehr online) – Abschnitt 12.2.3 – Kleinspannung, Bus-Leitung. Die optionale zusätzliche Stromversorgung („+“) wurde nicht verwendet.

Wie beim Testen mit UVR1611 wurde der ebenfalls kurze CAN-Bus nicht speziell terminiert:

Bedienungsanleitung Stiebel-Eltron WPF 7 basic, CAN-Bus angeschlossen

Stiebel-Eltron WPF 7 basic mit offenem Gehäuse – High (rot), Low (blau) und Ground (gelb) sind angeschlossen.

Damit konnten die elkementaren Tests beginnen …

Der beste Arbeitsplatz

(Für eine mögliche Einreichung bei Wettbewerben wie ‚Great place to work…‘)

… und die CAN-Schnittstelle wurde aktiviert, entsprechend der Anleitung von messpunkt.org mit einer Bitrate von 20kbit/s:

sudo ip link set can0 type can bitrate 20000
sudo ifconfig can0 up

Ohne aktive Kommunikation sind auf dem Bus mit Wireshark dann nur alle paar Minuten zwei Pakete zu sehen – die Wärmepumpe will also gefragt werden.

Besten Dank wieder an juerg5524.ch für die Bereitstellung von CAN-Tools und der Elster-Tabellen, die die diversen interessanten Parameter / ‚Indizes‘ enthalten!

Wir verschaffen uns zuerst einen Überblick darüber, welche CAN-IDs die Wärmepumpe überhaupt verwendet. Eine CAN-ID repräsentiert ein Set von Eigenschaften wie z.B. Ausgänge und kann auch Informationen über die Knoten-ID am CAN-Bus enthalten (Zu CAN-Grundlagen siehe z.B. dieses Dokument.)

Wird der CAN-Bus angefragt mit einer Sender-ID von 680 (siehe ) …

./can_scan can0 680

… erhält man folgende IDs …

elster-kromschroeder can-bus address scanner and test utility
copyright (c) 2014 Jürg Müller, CH-5524

scan on CAN-id: 680
list of valid can id's:

  000 (8000 = 325-07)
  180 (8000 = 325-07)
  301 (8000 = 325-07)
  480 (8000 = 325-07)
  601 (8000 = 325-07)

Fragt man gezielt nach jeder dieser IDs …

./can_scan can0 680 180

… sieht man die Liste der Elster-Indizes mit selbst erklärenden Namen der einzelnen Parameter. Die Siedler finden die interessanten (Logging-würdigen) Parameter alle ‚unter‘ der CAN-ID 180 – hier ein Auszug aus dem Output:

elster-kromschroeder can-bus address scanner and test utility
copyright (c) 2014 Jürg Müller, CH-5524

0001:  0000  (FEHLERMELDUNG  0)
0003:  019a  (SPEICHERSOLLTEMP  41.0)
0005:  00f0  (RAUMSOLLTEMP_I  24.0)
0006:  00c8  (RAUMSOLLTEMP_II  20.0)
0007:  00c8  (RAUMSOLLTEMP_III  20.0)
0008:  00a0  (RAUMSOLLTEMP_NACHT  16.0)
0009:  3a0e  (UHRZEIT  14:58)
000a:  1208  (DATUM  18.08.)
000c:  00e9  (AUSSENTEMP  23.3) 
000d:  ffe6  (SAMMLERISTTEMP  -2.6)
000e:  fe70  (SPEICHERISTTEMP  -40.0)
0010:  0050  (GERAETEKONFIGURATION  80)
0013:  01e0  (EINSTELL_SPEICHERSOLLTEMP  48.0)
0016:  0140  (RUECKLAUFISTTEMP  32.0) 
...
01d4:  00e2  (QUELLE_IST  22.6) 
...
092a:  030d  (WAERMEERTRAG_WW_TAG_WH  781)
092b:  0000  (WAERMEERTRAG_WW_TAG_KWH  0)
092c:  0155  (WAERMEERTRAG_WW_SUM_KWH  341)
092d:  001a  (WAERMEERTRAG_WW_SUM_MWH  26)
...
092e:  02db  (WAERMEERTRAG_HEIZ_TAG_WH  731)
092f:  0006  (WAERMEERTRAG_HEIZ_TAG_KWH  6)
0930:  0073  (WAERMEERTRAG_HEIZ_SUM_KWH  115)
0931:  0027  (WAERMEERTRAG_HEIZ_SUM_MWH  39)

Um z.B. den Stand der Raumheizungsenergie in MWh abzufragen, sendet man …

./can_scan can0 680 180.0931

… und der Output enthält gleich die Summe der MWh- und kWh- Angaben (Indices 0930, 0931):

elster-kromschroeder can-bus address scanner and test utility
copyright (c) 2014 Jürg Müller, CH-5524

value: 0027  (WAERMEERTRAG_HEIZ_SUM_MWH  39.115)

Beim Mitschnüffeln mit Wireshark sieht man die beiden Abfagen (Sender-ID 680) und Rückgabe der beiden Werte. Die Bedeutung der einzelnen Bits wird im Englischen elkementaren Artikel zu diesem Thema beschrieben.

Mitsniffen am CAN-Bus: Wärmepumpe, Abfrage Heizenergie

Netzwerk-Pakete am CAN-Bus: Abfrage der Elster-Indices 0930 (kWh Heizenergie) und 0931 (MWh Heizenergie) mit can_scan.

Um das Monitoring dieser Werte zu automatisieren, wird can_scan alle paar Minuten für die interessanten Parameter ausgeführt und der Zahlenwert aus dem Output in eine CSV-Datei geschrieben. Eine andere Option wäre, nur die Abfrage mit can_scan zu starten und den Output dann mit can_logger einzusammeln.

Die CSV-Datei wird dann per FTP an den Server geschickt, der als Datenkrake sämtliche Logfiles aus unterschiedlichen Quellen (UVR1611 / 16×2, PV-Wechselrichter, Smart Meter) zusammenfasst.

Das komplette Skript – wie auch noch etwas mehr Details zur CAN-Forschung – findet man wie immer auf dem elkementaren Blog.

Natürlich muss der neue Logger auch das Professionalitäts-Level des UVR16x2 einhalten, was die Montage betrifft: Deshalb sind im Routinebetrieb nun beide friedlich auf ihrem Holzbrettchen vereint zu finden (und nach einer Restrukturierung der Netzwerk-Architektur gibt es im Heizraum auch verlässliches LAN und WLAN):

Raspberry Pi mit PiCAN-Board von SK Pang, neben UVR16x2

Raspberry Pi mit PiCAN-Board von SK Pang neben UVR16x2 auf ökologischem Brettchen.

Wie der aufmerksame Leser sieht, wurde auch das CAN-Board getauscht – eine serielle Schnittstelle eröffnet Perspektiven für zukünftige Forschungsprojekte. Danke an SK Pang für ein eigentlich gar nicht mehr verfügbares Board!!

Wärmepumpen-Forensik – Teil 1: Mithorchen am Test-CAN-Bus

In grauer Vorzeit war die Aufnahme von Messdaten eine Herausforderung, die an physische und psychische Grenzen ging:

White-Out

White-Out im Winter 2012/13. Bodentemperaturen mussten trotzdem Irgendwer messen!

Wurzelsepp misst

Warten auf das Temperaturgleichgewicht…

Mittlerweile werden fast alle Messdaten automatisch aufgenommen:

Online-Schema CMI/UVR1611/UVR16x2

Online-Schema CMI/UVR1611/UVR16x2 mit den für die Steuerung nötigen Temperatur- und Durchflusssensoren und einigen weiteren Sensoren für ‚Forschungszwecke‘ (Bodentemperatur, Strahlung)

Aber ein wesentlich Sensor hatte sich der Automatisierungswut der Siedler bis jetzt widersetzt: Die offizielle Arbeitszahl in der Messdaten-Dokumentation wird berechnet aus der Wärmeenergie, die Irgendwer tagaus, tagein am Display der Wärmepumpe abliest.

Die Siedler-Wärmepumpe ist zwar ‚absichtlich dumm gewählt‚ – aber vielleicht gibt es ja doch smarte Ansätze? Im Handbuch der Stiebel-Eltron WPF 7 basic (Edit: 2019: Nicht mehr online – Englisches Manual hier) werden sie fündig: Im Abschnitt Kleinspannung, BUS-Leitung werden die Anschlüsse CAN-Bus für Fernbedienung angeführt – vielleicht könnte man ja hier die Ergebnisse der bisherigen CAN-Bus-Forschung nutzen? Und vielleicht sogar den derzeit nicht produktiven Raspberry Pi verwenden?

Wie praktisch immer, wenn man glaubt ein Pionier zu sein, findet man im Internet bereits Anleitungen und Tools. Besten Dank an die Stiebel-Eltron-Raspberry-Pi-CAN-Bus-Hacker von messpunkt.org und juerg5524.ch!

CAN-Erweiterungsboard für Raspberry Pi

Erste Herausforderung: Unser Pi ist das ältere ‚Modell B‘. Im Gegensatz zum Nachfolgermodell B+ hatte dieser Pi nur 26 GPIO-Pins für Steuerungszwecke anstatt 40. Die PIN-Belegung hat sich zwar nicht geändert, aber neuere CAN-Boards für 40 Pins passen nicht auf den alten Pi. Der versierte Bastler wird aber auf ebay fündig und freut sich über dieses kleine Board passend für 26 Pins.

Damit ist die CAN-Schnüffel-Hardware einsatzbereit:

Raspberry Pi mit CAN-Board

Raspberry Pi mit aufgestecktem CAN-Board und verdrahtetem CAN-Kabel (grau). Blaues Kabel: Ethernet, schwarzes Kabel: Stromversorgung.

Um nicht gleich die Energieversorgung der Siedlerhütte lahm zu legen und Software zu testen, schnüffeln wir zuerst in einer…

Testumgebung: UVR1611 mit Logger BL-NET

Der Pi-Schnüffler wird daher an einen Test-Bus angeschlossen der aus den folgenden altbekannten Geräten besteht:

  • UVR1611-Steuerung mit einem angeschlossenen Temperatursensor
  • Datenlogger BL-NET, per ausgekreuztem Ethernet-Kabel mit einem Test-PC verbunden, auf dem Winsol läuft. Daten werden jede Minute geloggt. (Überblick zu Logging mit UVR1611 und BL-NET).

Eigentlich müsste jeder CAN-Bus an beiden Enden terminiert werden. Da dieser Test-CAN-Bus wie auch der Wärmepumpen-CAN-Bus nur sehr kurze Kabel verwenden und sie keine negativen Erfahrungen gemacht hatten mit kurzen falsch terminierten Bussen, verzichten die Siedler auf eine korrekte Terminierung.

Test Can-Bus: UVR1611 und BL-NET

Test Can-Bus: UVR1611 (Mitte) mit einem Pt1000-Temperatursensor (Metallhülse, schwarzes Kabel) und Datenlogger BL-NET (oben, weiß). Das CAN-Kabel (grau) verbindet 1) UVR1611, 2) BL-NET (blauer Stecker) und Raspberry Pi (nicht im Bild). Am LAN-Kabel (gelb) ist ein PC mit Winsol angeschlossen.

Software und Konfiguration

Zuerst wird der Kernel des Raspberry Pi auf eine Version upgedated, die die CAN-Schnittstelle unterstützt. Für Details siehe z.B. diesen Blog-Artikel (Abschnitt Software Installation).

In der Raspberry-Pi-Konfiguration muss der für CAN benötigte SPI-Bus aktiviert werden. Dies wird im Detail beschrieben im Blog des CAN-Board-Herstellers SK Pang.

Bitrate einstellen

Der UVR-CAN-Bus verwendet eine Bitrate von 50kbit/s – im Gegensatz zum Wärmepumpen-Bus, der 20kbit/s benötigt. Mit folgendem Befehl wird die Bitrate eingestellt und die CAN-Schnittstelle ‚aktiviert‘:

sudo ip link set can0 type can bitrate 50000
sudo ifconfig can0 up

Bei falscher Bitrate sieht man beim Mitschnüffeln keine Pakete weil das CAN-Interface ’stummgeschaltet‘ wurde (Fehler BUS OFF [*]).

Wenn man alles richtig macht, sind jetzt alle zwischen BL-NET und UVR1611 ausgetauschten Pakete auch für den Raspberry Pi lesbar. Installiert man Wireshark, kann die CAN-Schnittstelle ausgewählt werden … und die Pakete werden korrekt dem CAN-Protokoll zugeordnet:

CAN-Bus-Netzwerkverkehr mitsniffen mit Wireshark

Nachdem Steuerung und Logger diesen Test überstanden haben, wagen sich die Siedler an die Kommunikation mit der Wärmepumpe heran. Fortsetzung folgt … hier in Teil 2.

[*] Etwas mehr Details im elkementaren Artikel zu diesem Thema.

_______________________________________________

Weitere Details zur CAN-Kommunikation der UVR1611

Photovoltaik und Wärmepumpe: Jahresbilanz

Nach einigen ausgewählten Tageskurven folgt hier die Jahresübersicht: Das war des erste Solarstromjahr der Siedler. Von Juni 2015 bis Mai 2016 …

  • … hatte die Siedlerhütte 6.600 kWh Strom verbraucht.
  • Davon verbrauchte die Wärmepumpe ca. 3.600 kWh
  • … um daraus 16.800 kWh Heizenergie zu erzeugen (inkl. Warmwasserbereitung) – in einer milden Heizsaison.
  • Damit bleiben 3.000kWh sonstiger Stromverbrauch für Haushalt, Büro, Steuerung und Hilfspumpen.

Die Photovoltaikanlage ….

  • hatte insgesamt 5.600 kWh ‚erzeugt‘ – kein schlechter Wert für eine 4,8kW-Anlage mit SO- und SW-orientierten Modulen.
  • Davon wurden 2.000 kWh direkt verbraucht und der Rest eingespeist.
  • Pro Tag wurden maximal 33,24kWh erzeugt (am 22.05.2016)

Die Monatsbilanzen zeigen den krassen Unterschied zwischen Sommer und Winter: Im Sommer kann der Bedarf der Wärmepumpe leicht durch die PV-Ernte abgedeckt werden, aber im Winter wird nur ein Bruchteil der täglich benötigten Heizenergie überhaupt erzeugt.

In den folgenden Diagrammen wird…

  • die monatliche PV-Erzeugung dargestellt als Summe aus der sofort im Haus verbrauchten PV-Energie und der ins Netz eingespeisten Energie.
  • Der monatliche Stromverbrauch ist die Summe von direkt verbrauchter PV-Energie und aus dem Netz bezogener Energie und
  • … und wird zum Vergleich dargestellt als Summe des Energieverbrauchs der Wärmepumpe und aller anderen Geräte.

Monatliche Energiebilanzen zur Photovoltaik-Anlage: Direktverbrauch, Einspeisung, Netzbezug,

Monatliche Energiebilanzen: Stromverbrauch des Kompressors der Wärmepumpe und aller anderen Geräte im Haushalt

Im Juni werden nur 300kWh benötigt – davon werden 200kWh direkt von der PV-Anlage geliefert (die insgesamt über 700kWh produziert). Im Januar dagegen werden 1100kWh benötigt und die PV-Anlage produziert nicht einmal 200kWh – da würde auch keine Batterie helfen.

In Januar sieht die Bilanz auch für jeden einzelnen Tag eher jämmerlich aus:

Tagesbilanzen PV-Energie Januar 2016: Direktverbrauch, Netzeinspeisung

Tagesbilanzen Januar 2016: Gesamter Stromverbrauch, Kompressor Wärmepumpe

Oft werden nur einige kWh geerntet, aber die Wärmepumpe benötigt fast immer mehr als 25kWh. Wenn die Siedlerhütte heute in Niedrigenergiebauweise neu gebaut würde, würde sich der Heizenergiebedarf bestenfalls halbieren – aber selbst dann würde die PV-Energie bei Weitem nicht ausreichen.

Im gesamten Jahr wurden 30% des Stromverbrauchs direkt von der PV-Anlage gedeckt (Autarkiequote = PV-Direktverbrauch / Stromverbrauch) und 35% der PV-Produktion wurden sofort genutzt (Eigenverbrauchsquote = PV-Direktverbrauch / PV-Erzeugung):

Kennzahlen zur Photovoltaik-Anlage: Eigenverbrauchsquote und Autarkiequote

Diese Quoten sind jetzt nicht wesentlich höher als typische Kennwerte, wie sie für Häuser ohne Wärmepumpenheizung angegeben werden. Trotzdem bewerten die Siedler diese Zahlen positiv aus wirtschaftlicher Sicht:

‚Rendite‘: Insgesamt haben die Siedler € 575 gewonnen – durch Netzeinspeisung um ca. € 0,06 / kWh und zu einem größeren Teil durch Eigenverbrauch von Strom, der sonst € 0,18 / kWh kosten würde. Bei typischen Anlagenkosten von € 2.000 pro kW-Peak ist das eine Rendite von fast 6% – nicht schlecht in Zeiten von Diskussionen über Negativzinsen.

Vergleich mit den Heizkosten: Die Wärmepumpen-Stromkosten (€ 0,18 / kWh) haben in diesem Jahr ca. € 650 betragen. Damit konnten die Heizkosten fast mit dem PV-Gewinn abgedeckt werden und die Siedler waren zu 88% ‚finanziell heizenergieautark‘.

‚Regionalpolitiker-Pseudoautarkie‘: Wie die regionalen Fürsten könnten sich auch die Siedler damit brüsten, dass ihre persönliche Region übers Jahr gerechnet fast autark ist: 85% der verbrauchten elektrischen Energie wurden von der PV-Anlage geliefert – wenn auch nicht unbedingt immer zum richtigen Zeitpunkt.

Würde sich eine Batterie rechnen? Auf der Basis typischer Lastprofile und Kennwerte könnte die Autarkiequote von 30% auf 55% gesteigert werden (für eine ausführlichere Rechnung und Verweise siehe diesen elkementaren Artikel). Damit könnten weitere ca. 2.000kWh selbst verbraucht werden und der Profit würde entsprechend der Differenz von Stromkosten (€ 0,18) und Gewinn beim Einspeisen (€ 0,06) steigen – um € 240 pro Jahr. Wenn eine Batterie also 20 Jahre leben würde, dürfte sie nicht mehr als ca. € 5.000 kosten, damit sie sich während ihrer Lebensdauer rechnet.