Irgendwo im hohen Norden: Der Große Tag!

Mit Hingabe und höchster Sorgfalt hatte der verwegene Siedler im hohen Norden oft noch zu später Stunde an der Fertigstellung der Anlage gearbeitet.

IIHN-Verwegen

Alle Warnungen hatte er in den Wind geschlagen und mutig die Herausforderungen angenommen.

Nach der erfolgreichen Wärmepumpenexpedition galt es jetzt noch, die letzten Rohre und Ventile in die Installation einzufügen.

IIHN-Hydraulik-1

Zu manch später Stunde saß der Siedler grübelnd über den Skizzen von Irgendwem, und übersetzte I-Diagramme in handfeste Installateurskunst …

Ja, und fast hätte er es vergessen, da fehlte ja auch noch dieses Außenteil – ‚Kollektor‘ nannte das Irgendwer. Lange hatte er es hinausgezögert, aber nun galt es auch diese letzte Hürde in Angriff zu nehmen und in die Wanten zu steigen …

IIHN-In-die-Wanten

‚In die Wanten!‘ – so mussten sich die Matrosen auf den Segelschiffen vergangener Jahrhunderte gefühlt haben …

Schließlich betrachtete er zufrieden sein Werk: ein durchaus attraktiver Blickfang – in massivem Lärchenholzdesign an seine Burgmauer gelehnt. Schön langsam entwickelte sich das Ganze zu einem Gesamtkunstwerk.

IIHN-Kollektor

Wurde auch Zeit. Denn erstens nahte der Winter und zweitens wollte auch der frisch gelegte Estrich ausgeheizt werden.

Wie schön war doch der Anblick, als sich die Adern des Solekreises endlich mit dem grünen Frostschutzgemisch füllten.

IIHN-Solefüllung

Und dann ging es an die letzten Prüfungen. Nachdem er gemeinsam mit Irgendwem die Checkliste des Inbetriebnahme-Protokolls durchgegangen war, war er letztendlich da, der große Moment!

Wie ein Film lief das ‚Abenteuer Eisspeicher‘ noch einmal vor seinem inneren Auge ab – mit all den Höhen und Tiefen, die er in den letzten Monaten durchlebt hatte. Nicht ohne Stolz ließ er seinen Blick noch einmal über die Installation schweifen, die er mit eignen Händen und etwas Hilfe von den pannonischen Siedlern geschaffen hatte.

Das Herz schlug ihm bis zum Hals, als er – der Kapitän auf der Brücke – an der Regelung den letzten Schalter umlegte und die Wärmepumpe damit ‚freigab‘:

‚Energie !‘

 

Die Wärmepumpe sprang an, und gespannt beobachtete er die Anzeigen an der Regelung und im Online-Schema. Alles innerhalb normaler Parameter. Bis nach exakt 3 Minuten die Wärmepumpe mit einem ‚Indoor Flow Alarm‘ trotzig ihren Dienst verweigerte.

IIHN-Durchflusswächter

Dieser eigenwillige Durchflusswächter im Herzen der exotischen Wärmepumpe signalisierte einen ‚Indoor Flow Alarm‘ …

Es wäre kein richtiges Abenteuer gewesen, wenn nicht im letzten Moment noch ein ‚Alarm‘ den Adrenalinspiegel an den Anschlag geführt hätte. Wie schon so oft, lag aber die Lösung in den schier unendlichen Tiefen des Wärmepumpen-Manuals verborgen, für das man ’nur‘ den passenden Universalübersetzer benötigte.

IIHN-Manual-1

Alles klar, oder? Diese  Zeilen enthielten für Irgendwen den entscheidenden Hinweis …

Ein Parameter der Wärmepumpenregelung wurde umgestellt. Die Wärmepumpe sprang wieder an und – lief durch!

Nach anfänglichem ‚Herzflimmern‘ stellte sich nun ein ruhiger, regelmäßiger und kräftiger Herzschlag ein, der begann die Siedlerhütte im hohen Norden zu wärmen …

IIHN-Herzschlag

Unfreundliche Anwendungen mit schlechtem Benehmen

(… oder: Endlich wieder ein Beitrag aus der Akte-X-Serie…)

Das Elkement ist eine typische IT-Security-Abteilung und versucht daher den produktiven Ingenieursabteilungen die tägliche Arbeit so mühsam wie möglich zu machen.

So wurde auf dem Chefingenieurs-Notebook das neueste Windows-10-Feature gleich ausprobiert – Controlled Folder Access. Windows 10 Defender wacht über Zugriffe auf definierte Ordner und wehrt Angriffe von unfreundlichen Applikationen ab.

Und als ebensolche wurden gleich Winsol (und dann auch TAPPS) eingestuft:

Fügt man Winsol.exe in der Windows Defender Konfiguration zur Liste der erlaubten Anwendungen hinzu (Allow an App), ist der Spuk vorbei.

Beim Testen dieser Funktionen wurde das Elkement auf folgendes fundamentale Rätsel der Winsol-Konfiguration aufmerksam: Wo werden die Winsol-Daten eigentlich per Default gespeichert? …. ein jahrelang vernachlässigtes Forschungsgebiet! Die Siedler hatten ja in jeder Winsol-Installation immer gleich ihren eigenen speziellen Logfile-Ordner eingestellt – dort wo z.B. die hungrige Datenkrake auf die Logfiles wartet.

In einer frischen Winsol-Installation begegnet einem aber dieses Mysterium:

Aus Winsol heraus betrachtet – beim Versuch den Standardordner zu ändern, sieht man die neuesten Logfiles in C:\Program Files\Technische Alternative\Winsol\LogX (rechts im Bild). Direkt im Explorer (links im Bild) sucht man den LogX-Ordner aber vergeblich, ebenso wie die Infosol-Ordner mit den Kundendaten:

Bevor sich das Elkement mit so etwas theoretisch beschäftt, wird einmal geschnüffelt mit Microsoft Sysinternals Process Monitor.

Aha! Winsol greift in Wirklichkeit auf einen Unterordner VirtualStore im Benutzerprofil zu – hier gibt es eine ‚Umleitung‘ (REPARSE):

Die Logfiles verstecken sich somit hier:

C:\Users\[Benutzer]\AppData\Local\VirtualStore\Program Files\Technische Alternative\Winsol

Dieser VirtualStore ist ein seit Vista genutztes Sicherheits-Features, wenn Anwendungen etwas zu ‚anmaßend‘ sind. Hier ein Beispiel:

…  in most cases when a developer tells his program to save data in the Program Files folder, for example, program settings, he has completely forgotten that program settings should be a per-user thing! … In other words, a well-behaved application should instead save its settings in the
C:\Users\<User Name>\AppData\Local\<Manufacturer>\<Product>\<Product Version>

Ever since Windows Vista, applications that are not running with raised privileges that try to write to the Program Files (or Program Files (x86)) folder will in fact write to the VirtualStore folder, unknowingly.

Es gibt es aber auch einige offizielle Winsol-Einstellungen pro Benutzer im Ordner:

C:\Users\[Benutzer]\AppData\Roaming\Technische Alternative\Winsol

Hier wird z.B. das Cookie für die Anmeldung am Webportal abgelegt – aber eben nicht die Logfiles.

Zusammengefasst: Möchte man jetzt die aktuelle Winsol-Installation auf einen anderen PC übertragen oder lokal den Ordner ändern – und in mehrfacher Hinsicht ’sicher‘ konfigurieren, also sicher vor Hackern und vor allem für sich selbst auffindbar, geht der unerschrockene Monitoring-Bastler so vor:

  • Winsol wird auf dem Ziel-PC neu installiert.
  • In den Grundeinstellungen wählt man einen Ordner außerhalb von ‚Programme‘ – am besten dort, wo man auch andere Projektdateien speichert – also in einem Ordner für den eine regelmäßige Sicherung erfolgt (Z.B.: Cloud und externe Festplatte)
  • In diesen neuen Ordner werden die Dateien aus dem alten Winsol-Ordner kopiert, also alle ‚eigenen‘ Logdateien, exportierte CSV-Dateien und ggf. auch die Unterordner anderer Kunden im Ordner Infosol. (Das gilt nur dann uneingeschränkt, wenn auch die gleiche Winsol-Version verwendet wird – vor ca. 1 Jahr gab es ja eine subtile mehrstufige ‚Migration‘ bedingt durch Regler- und Software-Updates.)
  • Um sich das einmalige Anmelden am Portal zu sparen, kann auch der Inhalt von C:\Users\[Benutzer]\AppData\Roaming\Technische Alternative\Winsol kopiert werden.
  • In Controlled Folder Access in Windows 10 muss Winsol.exe in die Liste der erlaubten Anwendungen eingetragen werden (oder der Logfile-Ordner ausgenommen – sicherer ist, nur Winsol zu erlauben).

Unpannonische Heizsaison 2016-2017

Die Siedler hatten den Bogen endgültig überspannt. Jahrelang wurde hier berichtet über Winter, die zu pannonisch waren oder nicht kanadisch genug waren. Irgendwie war das auch ein Ausdruck ihrer Frustration: Man musste zu drastischen Maßnahmen greifen, um einen echten Winter zu simulieren und endlich einen ordentlichen Eiswürfel zu erzeugen.

Und so haben die Siedler sie heraufbeschworen – die Heizsaison 2016 / 2017 mit dem kältesten Jänner (Januar) seit 30 Jahren. So sieht die Bilanz aus:

Der positive Rekord: 14m3 Eis ganz ohne Trickersei! Und das, obwohl das Obergeschoß wieder mit dem Holzofen beheizt wurde:

(Zu der eigenartigen ‚Schwingung auf dem Eisplateau‘ siehe die Geschichten von Blubber und Orkrakel.)

Die lange Periode von mittleren Außentemperaturen unter Null, ganz ohne Warmlufteinbruch lässt aber Schlimmes erahnen: Ein trauriger Rekord wurde erreicht – der grüne Balken der Monatsarbeitszahl hält sich im Jänner 2017 doch deutlich fern von der 4er-Marke:

In diesem Monat wurden über 3.000 kWh Heizenergie benötigt; im ganzen Jahr wurden ca. 16.600 kWh verbraucht inkl. Warmwasser – gleich wie wie in der vorigen Saison, in der die ganze Siedlerhütte mit der Wärmepumpe beheizt wurde. Zu beachten: Trotz heroischer punktueller Renovierungsmaßnahmen wird der Großteil der Heizenergie im Untergeschoß noch über Radiatoren verteilt – im Januar bei einer mittleren Heizkreis-Vorlauftemperatur von 37°C.

Der Kollektor konnte in diesen Wochen vergleichsweise wenig Energie liefern, während die fleißige Wärmepumpe täglich ca. 100 kWh Heizenergie ‚produzierte‘:

Damit konnte der Kollektor heuer auch seine übliche Kennzahl nicht ganz erreichen: Wie die Siedler und ihre Krake nicht müde werden zu betonen, liefert er ‚üblicherweise‘ in einer ‚typischen‘ Eisperiode über 75% der Umweltenergie für die Wärmepumpe.

In der letzten Saison folgte aber der kalte Rekord-Jänner auf einen ebenfalls schon kollektorunfreundlichen Dezember. Die Auftauphase im Februar folgt dann wieder dem üblichen Rekordernte-Muster.

Zu beachten ist aber, dass der Kollektor auch in dieser Saison wieder nur zu 50% genutzt wurde. Irgendwer wollte ja seine Forschungsschaltung ordentlich testen: Seit Herbst 2014 musste sich die Wärmepumpe mit 12 statt 24m2 Kollektorfläche begnügen – eine Fläche, die die Siedler angesichts des typischen Energiebedarfs ihrer historischen Siedlerhütte eigentlich als zu gering betrachten.

Etwas getröstet wurden die Siedler allerdings dann im heißen Sommer 2017 – durch Spielereien mit der passiven Kühlung. Sie konnten sich den Eiswürfel für Kühlzwecke zwar nicht lange aufheben, aber in diesem (Hitze-)Rekord-Sommer wurde die bis jetzt höchste Kühlenergie von insgesamt ca. 600kWh benötigt.

Der Kollektor kühlt in vergleichsweise kühlen Nächten den Eisspeichertank; der kalte Tank kühlt wiederum den Pufferspeicher – pro Tag werden von den ‚Heiz‘-Kreisen bis zu 30kWh Kühlenergie entnommen.

Nach dem Bericht über die Herausforderungen und das schwierige Umfeld kommt normalerweise der optimistische Blick in die Zukunft. Chief Engineer Somebody enthüllt die strategische hydraulische Weichenstellung für die eben gestartete Saison: Die zweite Hälfte des Kollektors wurde wieder zugeschaltet!

____________________________________

Die Messdaten aller Jahre und weitere Details und technische Daten zum System sind wie immer zu finden in unserer Messdatendokumentation (PDF)

Der Blubber: An der Klippe …

Irgendwer hätte dem beruhigenden Blubbern noch stundenlang zuhören können. Aber leider war das Messintervall für den Füllstand schon wieder vorüber und der Blubber verstummte unvermittelt. So schloss er den Eisspeicher-Deckel, und zog zufrieden Bilanz über die Feuerprobe des Blubbers (… die ja – genau genommen – eine ‚Eisprobe‘ gewesen war).

Blubber-1-Wasser

(1) Nur Wasser, kein Eis (mehr) im Eisspeicher

Der kälteste Pannonische Jänner seit 30 Jahren hatte für genügend Eis im Eisspeicher und damit für optimale Blubber-Testbedingungen gesorgt. Trotz dieser harschen Umgebungsbedingungen hatte der Blubber verlässlich seinen Dienst getan und den Füllstand kontinuierlich aufgezeichnet.

Blubber-Fuellstand

Obwohl dieser Blubber-Füllstand natürlich unmittelbar mit der Eisbildung zusammen hing, zeigte er trotzdem einen Verlauf, der auf den ersten Blick vielleicht etwas unlogisch erscheinen konnte. Besonders die starken Schwankungen in der Auftauphase (3) und der ’negative‘ Füllstand gegen Ende der Eisperiode (4)…

Eine direkt Umrechnung des Füllstandes in Eisvolumen war nur unter bestimmten Bedingungen möglich. Dazu musste man sich erst einmal vergegenwärtigen, was sich so im Laufe eines Winters im Eisspeicher abspielte:

Blubber-Phasen-der-Eisbildung

Schematische Darstellung der Eisphasen: (1) nur Wasser (2) kontinuierlicher Eiszuwachs um die Wärmetauscherrohre und an der Oberfläche (3) (temporärer) Eisrückgang und Wiederanstieg (4) Endphase der Eisschmelze: der Eisdeckel schmilzt zuletzt.

In der Phase der kontinuierlichen Eisbildung (2) entsteht Eis um die Wärmetauscherrohre und an der Wasseroberfläche. Da das Wasser durch das wachsende und an der Trägerkonstruktion festgefrorene Eis an die Oberfläche verdrängt wird, ist das gesamte Eisvolumen unter Wasser. – Der Füllstand kann direkt in Eisvolumen umgerechnet werden.

Blubber-2-Wasser-Ueber-Eis

(2) In der Phase der kontinuierlichen Eisbildung befindet sich das gesamte Eisvolumen unter Wasser

Sobald die erste Tauwetterphase einsetzt (3), schmilzt Eis zuerst an den Wärmetauscher-Rohren. Der Wasserstand sinkt und das nach wie vor an der Trägerkonstruktion festgefrorene Eisgebilde erhebt sich wie eine Klippe über das Wasser. Da ein Großteil der Oberfläche gefroren ist, sinkt der Wasserspiegel in den eisfreien Zonen überproportional stark.

In dieser Phase wird das direkt aus dem Füllstand ermittelte Eisvolumen unterschätzt. Dafür sind kleinste Änderungen im Eisvolumen durch starke Schwankungen des Füllstandes in relativ kleinen eisfreien Zonen sehr genau messbar.

Gefrier- und Tauphasen wechseln sich quasi wie Flut und Ebbe zwischen den Klippen ab.

Blubber-3-Klippe

(3) In Tauwetterphasen sinkt der Wasserspiegel in den eisfreien Zonen überproportional schnell und Eisklippen erheben sich über das Wasser

Gegen Ende der Eisperiode (4) sinkt der Wasserspiegel sogar kurzfristig unter den ursprünglichen Stand. Während das Eis um die Wärmetauscherrohre bereits vollständig geschmolzen ist, schmilzt der ‚Eisdeckel‘ mangels direkter Wärmezufuhr (fehlender Kontakt zu Wärmetauscherschläuchen und  zum Wasser) zuletzt.

Blubber-4-Eisscholle

(4) Am Ende der Eisperiode hängt der ‚Eisdeckel‘ in der Luft und schmilzt zuletzt.

Fortsetzung: Orkrakel und Peak Ice

Erde, Luft, Wasser und Eis – wozu das alles?

Jahrelang kämpften die Siedler mit der einen großen Herausforderung des Eisspeicher-Journalismus. Wie stellt man am besten dar, wie das Zusammenspiel von Kollektor und Eisspeicher funktioniert? Wie beantwortet man solche Fragen:

Was bringt der Kollektor eigentlich?

oder

Wozu braucht man den Kollektor überhaupt, wenn die Arbeitszahl während einer Eisspeicher-Challenge ohne Kollektor eh nicht so stark absinkt?

und vor allem

Wie groß ist eigentlich der Beitrag der Erde?

Kann hier die Datenkrake helfen, besser darzustellen, was im Lauf einer Heizsaison passiert?

Aus dem Eisvolumen und der aktuellen Tanktemperatur wird der Energievorrat im Tank berechnet. Die Energie im Tank ändert sich vor allem dadurch …

  1. dass aus dem Tank laufend Energie durch den Wärmetauscher entnommen (Wärmepumpenbetrieb) oder zugeführt (Kollektor) wird.
  2. und dass über die Wand und den Boden des Tanks Wärme mit der Umgebung ausgetauscht wird.

Der Beitrag der Erde kann aus Eisvolumen, Tanktemperatur und der gemessenen Wärmetauscher-Energie berechnet werden. Ergo:

Vorratsänderung (Eis, Wasser) = Energie Tankwärmetauscher + Energie Erde

In stundenlangen Sitzungen von Forschungs- und Ingenieursabteilungen wurden dabei folgende Definitionen für die Vorzeichen dieser Beiträge festgelegt:

Energiequellen, -austausch, -vorrat - Vorzeichenfestlegungen

Wenn der Kollektor aktiv ist, sind drei Wärmetauscher in Serie geschaltet: Der Kollektor, der Wärmetauscher im Tank und der Verdampfer der Wärmepumpe. Die Wärmepumpe entnimmt ihre Entzugsenergie entweder nur aus dem Eisspeicher (wenn der Kollektor weggeschaltet ist) oder aus der kombinierten Quelle gebildet aus Kollektor und Tank.

In den folgenden Diagrammen für die ‚Eisspeicher-Challenge-Saison‘ 2014-2015 werden Entzugsenergie, Kollektorernte, Energiefluss über den Tank-Wärmetauscher, Beitrag der Erde und die Änderung des Eis-/Wasser-Energievorrats gegenübergestellt.

Saison 2014-2015: Monatsbilanzen: Energiequellen, -austausch, -vorrat

Von September bis Jänner steigt die benötigte Entzugsenergie – aber auch der Kollektorbeitrag! Je länger die Wärmepumpe gleichzeitig mit dem Kollektor läuft und je kälter der Tank im Vergleich zur Luft ist, umso mehr Energie kann geerntet werden. In einer typischen Saison deckt der Kollektor in den Eismonaten Dez / Jan / Feb ca. 75% der benötigten Entzugsenergie ab – aber nur in Zusammenspiel mit dem Eisspeicher!

Am Anfang der Saison 2014/15 – solange sich noch kein Eis gebildet hat – folgen die Tanktemperatur und die Soleeintrittstemperatur ungefähr der Außentemperatur. Ende November ist die Außentemperatur aber schnell gesunken – damit kann über den Kollektor aus der vergleichsweise kalten Luft wenig in den noch warmen Tank geerntet werden. Daher wird der Eis-Wasser-Vorrat angezapft und die Erde beginnt zu liefern.

2014-09-01 - 2015-05-15: Temperaturen und Eisbildung

2014-09-01 - 2015-05-15: Tagesbilanzen: Energiequellen, -austausch, -vorrat Am 10.1.2015 konnte dank des Wintersturms Felix extrem viel Kollektorenergie geerntet werden.

Erst nach Abschalten des Kollektors mit Anfang Februar (‚Eisspeicher-Challenge‚), ändert sich der Vorrat beim Vereisen deutlich.

Da der Kollektorbeitrag im Februar gleich Null ist, entspricht der Energieaustausch über den Tank-Wärmetauscher genau der Entzugsenergie. Die Erde liefert dann ca. ein Drittel der Entzugsenergie.

Mitte März startet der Auftauvorgang: Der Kollektor kann aufgrund der konstant auf 0°C bleibenden Tanktemperatur viel ernten und der Tankvorrat wird schlagartig wieder aufgepumpt. Der Energieaustausch mit der Erde ist sehr klein, während der Wärmefluss über den Tankwärmetauscher fast gleich der Vorratsänderung ist.

Anfang Mai startet der Sommerbetrieb: der Kollektor ist aus, um den Tank solange wie möglich auf 8°C zu halten – was zu einem kleinen Wärmefluss der schon warmen Erde in den Tank führt.

Die Datenkrake – ein Formwandler

Die Siedler sind immer wieder fasziniert von den seltsamen Lebensformen, die sich rund um die Siedlerhütte so tummeln. Auch altbekannte Spezies sind immer wieder für eine Überraschung gut!

Wie wir alle wissen, sind Kraken ja wahre Formwandler:

(…was an ihrem fehlenden Rückgrat liegt – aber soweit wollen wir diese Metapher nicht ausreizen…)

Jedenfalls zeigt auch die hauseigene Krake eine erstaunliche Wandlungsfähigkeit – ein Glück angesichts solcher Herausforderungen:

Wenn Irgendwer mit diversen anderen Lebensformen kämpft, dann vergisst er Zeit, Raum und vor allem dem Wissenschaftsoffizier zu melden, dass sich die Sensorlandschaft der Siedler über Nacht grundlegend verändert. Das Elkement steht dann vor der Herausforderung, der Krake wieder neu beizubringen, wie sie z.B. jetzt erkennen soll, ob die Wärmepumpe gerade läuft oder nicht. Soll man die Anforderung der Wärmepumpe heranziehen? Oder die Anforderung der Solepumpe? Oder doch eine Temperaturdifferenz und den Durchfluss im Solekreis?

Generell erfordert die scheinbar so volksschulmäßig simple Mittelwertbildung einiges an FingerspitzenTentakelgefühl: Abgesehen von Raum- und Außentemperatur sind die meisten Mittelwerte nur sinnvoll in Messintervallen, in denen bestimmte Bedingungen erfüllt sind. In die mittlere Vorlauftemperatur des Heizkreises sollten natürlich nur Werte einfließen, die gemessen wurden während die Heizkreispumpe läuft – andererseits müssen aber die Werte während der sommerlichen Kühlphasen ausgenommen werden. Vor allem muss die Krake lernen, welche Sensorwerte evtl. als Fehler zu werten sind!

Um das Elkement zu verwirrend, fügt Irgendwer aber nicht nur dauernd neue Sensoren hinzu, sondern ändert fieserweise auch die Rollen etablierter Sensoren. So wird schnell einmal eine neue Wandheizung eingebaut und was der (Regelungs-)Welt bisher als Radiatorheizkreis bekannt war, wird nun zu einem neuen Wandheizkreis.

Aber auch das Elkement selbst ist an der ständigen Krakenmutation nicht unschuldig: Während sich Irgendwer lange zufrieden gab mit zwei unterschiedlichen ‚Logging-Quellen‘ – der UVR1611 / UVR16x2 – und einigen manuell gemessenen Werten, hat das Elkement einen Zähler-Zoo herangezüchtet und schreckt nicht davor zurück, die Krake ihre Tentakel direkt in das Innere der Wärmepumpe vordringen zu lassen. All das erzeugt neue Logfiles mit Daten, die zu anderen Zeitpunkten in anderen Zeitintervallen gemessen werden und die von der Krake mit den UVR-Daten verknüpft werden müssen.

Datenkrake: Tentakel in der Wärmepumpe

Insbesondere die früher manuell abgelesenen Daten waren der Krake ganz besonders schwer beizubringen: Irgendwer war zwar ein verwegener Messdatenableser, weigerte sich aber beharrlich, jeden Tag exakt um 00:00:00 Energiewerte aufzunehmen. Da die dumme Wärmepumpe entweder an oder aus ist, macht eine Interpolation der Werte wenig Sinn und das Elkement musste jene erwähnten Mittelwerte für irgendwelche seltsamen Zeitintervalle berechnen.

Aber nicht nur irgendwelche Experimente fordern die Krake heraus: So mancher Hersteller von Steuerungen kommt ja hin und wieder auf die Idee, ’schnell einmal über die Feiertage‘ die Struktur der Loggingdaten mit einem Firmwareupdate durcheinanderzuwirbeln! Die Tentakel der Krake müssen dann bis zum Äußersten gedehnt werden, um die Daten wieder richtig einzusammeln.

Wie regelmäßige Leser dieses ‚Wissenschaftsblogs‘ erahnen werden, muss natürlich jeder dieser Laborversuche ausführlich dokumentiert und nachvollziehbar qualitätsgesichert werden. Gerade bei Tierversuchen gibt es ja sehr strenge Auflagen!

Nach langem Tüfteln – und dem Konsum vieler klischeehafter Filme über künstliche Intelligenz – hat das Elkement jetzt der Datenkrake ein paar weitere Metaebenen verpasst: Die DNA der Krake – also die Beschreibung der Logdateien und Sensoren, wird in einer separaten Vor-Krake abgelegt. Schonungslos wird hier jeder Messfauxpas von Irgendwem dokumentiert: So enthält die Vor-Krake eine Tabelle, in der man Zeitbereiche findet mit Kommentaren wie Irgendwie bastelt und hat versehentlich die Sicherung ausgeschaltet.

Aus der Vor-Krake entsteht dann ‚per Knopfdruck‘ die Große Krake, die automatisch Logdateien in der richtigen Reihenfolge frisst. Nach der Entschlüsselung der Kraken-DNA lässt sich diese auch klonen und frisst auch die CSV-Dateien anderer Siedler.

Nur wenn man diese Vorgeschichte kennt, kann man die kindliche Freude des Elkementes nachvollziehen, wenn die sehr schlichte Benutzeroberfläche dann das Durchklicken der wichtigen Kennwerte für LEO_2-Anlagen erlaubt – für Tage, Monate, Jahre oder Heizsaisonen.

Datenkrake: Excel-Auswertung

Endlich! Der Blubber.

Der metrische Sensor zur visuellen Erfassung des Füllstandes im Eisspeicher von LEO_2 war eine Innovation der ersten Stunde gewesen. – Einfach, robust, verlässlich und unschlagbar günstig!

blubber-metrischer-fuellstandsmesser

Der Klassiker unter den Füllstandsmessern …

Er hatte nur einen entscheidenden Nachteil: Das technische Personal – also Irgendwer – musste zur Erfassung des Füllstandes direkt vor Ort sein – also am Einstieg zum Eisspeicher. Und das natürlich genau zu jenen Zeiten, zu denen sich Eis im Eisspeicher bildete.

Über die nun doch schon einige Jahre dauernde Beobachtungsphase hatte sich inzwischen herausgestellt, dass die Phasen mit Eisbildung ziemlich gut mit widrigen äußeren Wetterbedingungen im Zusammenhang standen. Das wiederum bedeutete, dass Irgendwer regelmäßig seinen Hintern aus der warmen Stube in die unwirtliche Kälte des pannonischen Winters hinausbewegen musste, um diesen entscheidenden Messpunkt einzusammeln.

Und so, wie immer Mangel und Not die besten Innovationen hervorbringen, war es auch diesmal. Es war allerdings ein langer und steiniger Weg gewesen, bis Irgendwessen Forschungen im Bereich der Füllstandsmessung die gewünschten Ergebnisse gezeitigt hatten.

blubber-vorgaenger

Die Entwicklung der Füllstandsmessung hatte einige Prototypen hervorgebracht, bevor mit dem Blubber der Schritt von der diskreten Niveau-Überwachung zur kontinuierlichen Messung des Wasserstands im Eisspeicher gelungen war.

Wollte Irgendwer doch die Änderung des Wasserspiegels mit einer Auflösung von 1 mm messen, was einer Änderung des Eisvolumens von ca. 0,15 m3 entsprach. Und das in einem Eisspeicher, in dem man darauf achten musste, dass die Füllstandsmessung nicht einfror oder durch Eis verfälscht wurde. Außerdem wollte er diesen Sensor natürlich an seine Universalregelung anschließen, um den kontinuierlichen Verlauf des Füllstandes zu erfassen und bei Bedarf auch (regeltechnisch) darauf reagieren zu können.

Und so war er nach langem Tüfteln schließlich auf den ‚Blubber‘ gekommen, wie er ihn liebevoll nannte. Mit einer Belüftungspumpe, wie sie auch gerne für Teiche oder Aquarien verwendet wird, blies er Luft über ein Messrohr in den Eisspeicher ein. Wie der Physiker weiß, steigt der dafür notwendige Druck linear mit der Höhe des Wasserspiegels.

blubber-messrohr-3

Der ‚Blubber‘ in Aktion …

Für die Messung, und Aufzeichnung dieses Drucksignals sowie für die Umsetzung von ‚Druck‘ in ‚Wasserstand‘ und ‚Eisvolumen‘, fand er alle notwendigen Funktionen in seinem neuen Spielzeug, der UVR16x2, sodass er schließlich Wasserstand und Eisvolumen brandaktuell im Onlineschema darstellen konnte.

blubber-onlineschema

Der relative Wasserstand zum Soll-Füllstand (h.rel) und das Eisvolumen (V.Eis) waren dank ‚Blubber‘ nun aktuell im Online-Schema ablesbar …

Wenn es draußen stürmt und schneit, bin ich zum Messen stets bereit!‚ dachte sich Irgendwer, der damit – nachdem das El(k)ement die Wärmepumpe gehackt hatte –  nun auch den letzten Messpunkt in die automatische Datenerfassung integriert hatte.

Und ganz nebenbei glaubte irgendwer, mit dem ‚Blubber‘ auch das Problem der potentiellen Sensor-Vereisung gelöst zu haben. Die Nagelprobe stand mit der beginnenden ‚Eisperiode‘ unmittelbar bevor…

____________________________________________

Fortsetzung – der Bericht nach dem Ende der Eisperiode: Der Blubber: An der Klippe